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The covering number of a set F in the space of continuous functions on a compact
set X plays an important role in learning theory. In this paper we study the relation
between this covering number and its discrete version, obtained by replacing X with a
finite subset. We formally show that when F is made of smooth functions, the discrete
covering number is close to its continuous counterpart. In particular, we illustrate this
result in the case that F is a ball in a reproducing kernel Hilbert space.

1. INTRODUCTION

Let C'(X) be the Banach space of continuous functions on a compact set X C IR" with
the norm || f|| = sup,ex | f(x)], and H C C(X) a Hilbert space with the norm || - ||. We
denote by Bp the ball of radius R in ‘H and by N (Bg,n) the n—covering number of By
using the norm of C'(X), i.e. the minimal ¢ € IN U {oo} such that there exist ¢ disks in
Bp of radius n covering Br. We assume that this number is finite for every n > 0 or,
equivalently, that Bg is pre-compact in C'(X).

We study the dependency of N'(Bg,n) on the space X. In particular, we consider the
case where X is replaced by a finite subset. This problem is motivated by recent results in
[3] where the covering numbers of compact sets of C'(X) are shown to play a fundamental
role in the problem of bounding the deviation between expected and empirical error
functionals studied in learning theory.

In the related statistical learning theory [9] the setting of the problem is similar but
with the important difference that the covering number is computed by using a semi-norm
in C(X), namely the maximum norm of f with respect to (w.r.t) a finite set of points
belonging to X. Let x = {z1,...,2,} C X be such a set. We denote by Ny(Bg,7)
the n—covering number of Bgr when the maximum norm over the set x is used, i.e.
max?®, | ().

We show that, if H has some kind of Holder continuous property, the covering number
of Br does not change much as a function of X. This is summarized by the following
theorem.
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Theorem 1 Suppose that for any f € H and x,t € X such that ||x —t|| < we can write

[f(@) = fO < [[fllAlz = ¢])

with A(+) a positive continuous function which satisfies A(0) = 0. Then, for every n > 0,
we have

N(BRJT] + 2RA(V(X))) < Nx<BR777) < N(BR7T]>
where we have defined v(x) = inf{a >0 | X CU", D(x;,a)}.

The proof of Theorem 1 is given in Section 2 where we also discuss its implications in
learning theory. In Section 3 we discuss Theorem 1 in the context of reproducing kernel
Hilbert spaces.

2. RELATION BETWEEN THE COVERING NUMBER IN C(X) AND ITS
DISCRETE APPROXIMATION

The idea behind proving Theorem 1 is based on the simple observation that, under the
Holder property hypothesis, the norm in C'(X) can be bounded by a linear function of
the semi-norm w.r.t to a finite set of points x.

Proof of Theorem 1: The right hand side (r.h.s.) follows immediately from the in-
equality
mas | (z,)] < sup /()]

m z€X

i=1,...,

To prove the left hand side inequality note that, since X is compact and by hypothesis

", D(z;,v(x)) covers X, we can rewrite the norm in C'(X) as

suplf(o)l = s { _sup (700}
zeX =M zeD(z4,v(%))

When f € H, we also have |f(z) — f(x;)| < ||fllnA(]|z — x;]|) for every x; € x, which
combined with the last equation gives

max | f(z;)] + [| Il A (x))-

=1,...m

sup | f(z)] <
zeX v

Let N = Ny(Bg,n) and fi,..., fy be the elements in Br(H) which realize the covering,
i.e. for every f € Br(H), max;—1__m |f(z;) — fu(x:i)] < nfor some n € {1,...,N}. From
last equation it follows that

,,,,,

sup [f(2) = fu(z)] < max |f(z) = fu(z:)] + [[f = full xA (X))

reX 1=Lyeees

< n+2RA(v(x)).

Then, when using the norm of C(X), Bgr(H) is covered by balls with centers f, and
radius n + 2RA(v(x)). QED.



Theorem 1 holds for every finite subset of X. In particular, since we assumed X to be
compact, we can take x to be a minimal e—net of X of size m. In this case v(x) is the
m—entropy number of X, €,,(X), which is defined as the minimal positive a such that
there exist m closed balls in X with radius a covering X. This number can be bounded
as a function of n = dim(X). For example, in [3] it is shown that

em(X) < 8r(m+1)7x

where r is the radius of the smallest sphere containing X. Combining this inequality with
Theorem 1 we have the following corollary.

Corollary 1 Under the same hypotheses of Theorem 1 there exists, for every m > 0, a
set of m points in X, X ={Z1,...,Zn}, such that

N (Bp,n+2RA (8r(m +1) ")) < Nz(Ba,n).

Remark 1: Theorem 1 also applies to the case that x is replaced by every subset of X.
Let No(Bg,n) be the covering number w.r.t X, C X. If X, is dense in X, Ny(Bg,n) =
N(Bpg,n). Thus, assuming that x becomes dense in X when m — oo, we also have
limy, oo Ny (Br, 1) = N (Bg,n).

Remark 2: 1f By is replaced by a compact subspace F of H, Theorem 1 still holds true if
we let R be the radius of F, R = inf ey supyez || f — gl

2.1. Covering number and sample complexity

Learning theory studies the problem of computing a function from a finite random
sample. We briefly explain the problem here. For a more detailed account see, e.g.,
[1,3,5,9] and references therein.

We have two sets of variables x € X and y € Y C IR which are related by a probabilistic
relationship P(z,y) defined over the set X x Y. Our desired function is the minimizer of
the expected error

B(f) = [y = f(2))*P(x,y) drdy.

Unfortunately this functional can not be computed because the probability distribution
P(z,y) is unknown. We are only provided with a training set of m pairs (z;,v;), i =
1,...,m, sampled in X x Y according to P(z,y). A natural approach is to replace the
expected error with the empirical error

m

> (v — fl@:)”.

1
m;35

Em(f) =

We then minimize F,, in a compact subset F of a Hilbert space H. Let f,, be a minimizer.
A main issue in the theory is to study conditions which guarantee that FE,,(f,,) is close
to E(f,) in probability. Formally we require that

Prob {|E(fm) = Em(fm)| <€} =116 (1)



where the probability is w.r.t. the random draw of the training set and e¢ and § are
two small positive numbers. The answer to this question is related to the study of the
covering number of F. It is based on extending some classical probabilistic inequalities,
such as Bernstein and Hoeffding’s, to function spaces?. We assume that, for every f € F,
ly — f(x)|] < M almost everywhere, and, without loss of generality we chose M = 1.
For our purpose here it is sufficient to consider the results derived through Hoeffdings’s
Inequality [6]. A key result from Vapnik and Chervonenkis (see, e.g., Chapter 7 of [9] or
[1]) establishes that

§d=12m [ sup Nx (.7-", g)] o (2)

|x|=2m

A result with a similar flavor but with a much simpler proof, was recently derived by
Cucker and Smale [3]. Tt says that?

(3)

Equations (2) and (3) can be inverted to obtain a lower bound on the number of samples
m as a function of €,§ and the covering number. For example, Equation (3) gives

8 € o

This is also called a sample complexity bound: when m satisfies the bound, Inequality
(1) holds true. Assuming that In NV (F,n) grows as 77 [8], the sample complexity bound
gives, for a fixed §, m = O(¢~**9). Now let us look at Equation (2). Corollary 1 implies
that

N(BRW/) S sup Nx(BRﬂ?) S N(BRan)

|x|=m

with i/ = n+2RA(8r(m~+1)"w). We then see that N'(Bg, ) is close to SUD|x = Nx(Br; 1)
if

2RA (8r(m+1)7%) <n.

Thus, assuming that A(&) goes to zero as £°, s > 0, the last inequality implies

2R)* (8r)" n
m > % —1=0(@"*).
’]75
We conclude that, under the assumption that InN(F,e) = O(e7?), if n < s(2 + q),
Equations (2) and (3) lead to the same sample complexity bound.

2For a nice introduction to this subject see Chapters 2 and 3 of [4].
3Note that the result in [3] in based on Bernstein’s Inequality. However, the same argument in that paper
remains true in the case of Hoeffdings’s Inequality, leading to Equation (3).



3. SPACES WITH A REPRODUCING KERNEL

In this section we take the space H to be a reproducing kernel Hilbert space (RKHS)
[2], which we farther denote by Hx. We first recall few facts concerning the RKHS that
we need in order to analyze Theorem 1 in this context. For a detailed overview on RKHS’s
consistent with our notation see [3].

Given a continuous, symmetric, and positive definite function K : X x X — IR, called
kernel, the associated RKHS is defined as the completion of the span of the set {K, =
K(z,-) | z € X} with the norm || - || x induced by the inner product (K, K;)x = K(x,1).
Two important examples of kernels are the polynomial kernel, K (z,t) = (z,t)¢, with d a
positive integer, and the Gaussian kernel, K(x,t) = exp{—0|z — t||*}, 8 > 0, where we
denoted by (+,) be the scalar product in R™.

Let Ei(X ) be the space of square integrable functions on X w.r.t the positive measure
p1. We consider the integral operator associated to kernel K, Ly : £2(X) — C(X) defined
as

(Lkg)(a) = [ K(z.)g()du(t

X

and let {¢;(x), \;}52, be a system of eigenvectors and eigenvalues of L.

Theorem 2 If K is continuous, Br is compact in C(X). In addition the following in-
equalities hold for every f € Hi and x,t € X:

[F ()] < 1w/ K (2, ) (4)

F(@) = FO < I/ K (2, 2) + K (£ 1) — 2K (2, 1), ()

Proof: We first notice that Hy can be seen as the image of an injective operator L % :
L2(X) — C(X) defined by Lyg¢; = VAi¢i. Then, for every f € Hg we can write
f = Lyxg, with g = >7°, a;,¢;. We have

@) = (L) @) = Y any/Norta) = (@ B(a)

where we have defined the map ® : X — (2 by ®;(x) = v/ \;¢;(x). As shown in Theorem 3,
Chapter 3 of [3], this map is well defined, continuous and satisfies (®(x), (t)),2 = K(x,t)
. Applying the Cauchy-Schwartz inequality to the r.h.s. of inequality above, we obtain

U@MﬂWMiMW@ﬂWmMW@

This proves Inequality (4). Inequality (5) is proved similarly, by observing that

[f(2) = @O < [ flll|@(x) — ()2
and using (®(x), ®(t))e = K(z,1).



Finally, we show that L % is compact. This implies that Bg is compact in C(X).
First notice that, since K is continuous, Inequality (4) implies that L % is bounded and

| Lokl < sup,ex /K (z,z). To see that L& is compact, consider a bounded sequence
{fu}oz) in £2(X). By Inequality (4), (Lyxfn) is uniformly bounded and by Inequality
(5) it is equicontinuous. Therefore by Arzela’s Theorem (see, e.g., Chapter 11.4 of [7])
L % is compact. QED.

Remark 3: Theorem 2 improves Proposition 1 in [3], where it is shown that Lx is compact.
Our result indeed shows that Ly« is compact if ¢ > 1/2.

Equation (5) is not yet in the form required by the hypotheses of Theorem 1. In the
case, common in practice, that the kernel K is smooth, we can explicitly characterize the
form of the function A. We assume in particular that K belongs to C*(X x X). Let
K9 (s,t) be the gradient of K(s,t) w.r.t. to s, K*%(s,¢) the n x n matrix formed by
the second order partial derivatives of K(s,t) w.r.t to s, and K!'U(s ¢) the n x n matrix
formed by the second order partial derivatives of K(s,t) w.r.t. to one component of s
and one of t. Likewise, we define K[%(s,¢) and K[*?(s,t), and note that, since K is
symmetric, K% (s t) = KIO(t s) and KI9%(s,t) = K2(¢,5). With this notation at
hand, the expansion of K (s,t) is power series reads:

K(s,t) = K(z,z)+ (KM(z,2),5 — 2) + (KBz, 2),t — ) +
+;(s — 2, KBz z)(s — x)) + ;(t —x, K%z, 2)(t — x))

+(s — 2, KW (z,2)(t — 2)) + O(max((t — 2)°, (s — 2)°]).
Applying this formula to the r.h.s. of Equation (5), we obtain
(@) = f@O)? < (z = t, KM (2, 2) (2 — 1)) < [ K (2, )2 — ]|
Therefore, Hx satisfies the hypotheses of Theorem 1 with

A(v) = sup | KOV (2, z)||2v (6)
xeX

where ||[K1V (2, z)|| is the operator norm. Note that for the Gaussian kernel we can
directly compute the r.h.s of Equation (5), obtaining A%(v) = 2(1 — e #**) which implies
that A(v) ~ /20v.

Going back to the discussion at the end of Section 2.1, we see that Equations (2) and (3)
lead to the same sample complexity bound if n < 2+ ¢. However, it should be possible to
improve this result when K has higher order derivatives. This is left as a future problem.
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